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Rigorously validated quantitative structure-activity relationship (QSAR) models have been
developed for 48 antagonists of the dopamine D1 receptor and applied to mining chemical
datasets to discover novel potential antagonists. Several QSAR methods have been employed,
including comparative molecular field analysis (CoMFA), simulated annealing-partial least
squares (SA-PLS), k-nearest neighbor (kNN), and support vector machines (SVM). With the
exception of CoMFA, these approaches employed 2D topological descriptors generated with
the MolConnZ software package (EduSoft, LLC. MolconnZ, version 4.05; http://www.eslc.va-
biotech.com/ [4.05], 2003). The original dataset was split into training and test sets to allow
for external validation of each training set model. The resulting models were characterized by
cross-validated R2 (q2) for the training set and predictive R2 values for the test set of (q2/R2)
0.51/0.47 for CoMFA, 0.7/0.76 for kNN, R2 for the training and test sets of 0.74/0.71 for SVM,
and training set fitness and test set R2 values of 0.68/0.63 for SA-PLS. Validated QSAR models
with R2 > 0.7, (i.e., kNN and SVM) were used to mine three publicly available chemical
databases: the National Cancer Institute (NCI) database of ca. 250 000 compounds, the
Maybridge Database of ca. 56 000 compounds, and the ChemDiv Database of ca. 450 000
compounds. These searches resulted in only 54 consensus hits (i.e., predicted active by all
models); five of them were previously characterized as dopamine D1 ligands, but were not
present in the original dataset. A small fraction of the purported D1 ligands did not contain a
catechol ring found in all known dopamine full agonist ligands, suggesting that they may be
novel structural antagonist leads. This study illustrates that the combined application of
predictive QSAR modeling and database mining may provide an important avenue for rational
computer-aided drug discovery.

Introduction
The class of G protein-coupled receptors includes the

dopamine receptors, made of two subclasses (D1-like and
D2-like subtypes2) coded from five genes. The dopamine
receptors play important roles such as modulation of
motor function, cognition, memory, emotional activity,
and various peripheral functions3, and have been espe-
cially implicated in disorders such as Parkinson’s
disease and schizophrenia.4 The consequences of activa-
tion or blockade of dopamine receptors are wide-
ranging,5-8 and perturbation of dopamine neurotrans-
mission may result in profound neurological, psychiatric,
or physiological signs and symptoms. For these reasons,
there has been a great deal of research focused on the
discovery of novel dopaminergic ligands as potential
drug candidates. One aspect of this research has been
the development of several pharmacophore and/or quan-
titative structure-activity relationship (QSAR) models
of dopaminergic action.9-18

Due to the difficulties with crystallizing transmem-
brane proteins, X-ray structures for the dopamine

receptors are not currently available. Traditionally, this
leaves two computational approaches to discover novel
ligands for the dopamine receptors: modeling of the
receptor binding site, which can be used for structure-
based design and ligand-based drug design approaches,
e.g., active analogue approach17 or QSAR.19 The first
approach can be aided by site-directed mutagenesis
within the putative binding site to investigate its effect
on binding of high affinity rigid ligands.20-24 The second
approach analyzes compounds with known specific
binding affinity to a receptor and is used to build
quantitative models relating affinity to molecular struc-
ture. Recent studies have emphasized the importance
of model validation to ensure that it is capable of
accurately predicting the binding affinity for a test set
containing compounds not used in the model genera-
tion.25 Once a series of validated models are collected,
they then can be used for database mining to identify
possible ligands for the receptor of interest.9,26

Herein, we report on the development of rigorously
validated QSAR models for 48 D1 dopaminergic antago-
nists. Despite many years of intensive research, QSAR
modeling remains largely an empirical approach where
the choice of the class of descriptors and the choice of
an optimization technique resulting in successful models
are not known a priori. For instance, our recent studies
of fragrances using a combinatorial QSAR approach27
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indicated that only a small fraction of possible combina-
tions of descriptor types and optimization techniques
result in acceptable models. Thus, we chose to use
several independent QSAR methods including Co-
MFA,28 SA-PLS,29 kNN,30 and SVM31 to determine
which would result in the most predictive models. The
purpose of this study was to generate a library of
validated QSAR models with the highest external
predictive power and use these models to screen avail-
able chemical databases to identify novel high affinity
dopamine ligands. An important component of our
studies was that, whenever possible, we have defined
model applicability domains. These domains are defined
quantitatively in the chemical descriptor space in the
content of each specific QSAR model. They define the
limits of structural diversity of external compounds for
which prediction is considered possible based on the
model-dependent estimate of the structural domain
covered by the training set model.32 Mining the publicly
available NCI, ChemDiv, and Maybridge databases with
QSAR models taking into account their applicability
domains resulted in only 54 consensus hits with high
predicted affinity to D1 receptor. Five of these hits had
experimentally confirmed binding to the dopamine D1
receptor, but were not present in the original dataset.

This strategy for drug discovery that combines vali-
dated QSAR modeling and database mining has been
under development in our group for several years26,29

and was most recently applied successfully to the
discovery of novel anticonvulsant agents.29 We shall
emphasize that this approach shifts the traditional focus
of QSAR modeling from achieving statistically signifi-
cant training set models (where the results are pre-
sented in the form of statistical parameters) to identify
novel potentially active compounds on the basis of
statistically significant and externally validated models
(i.e., where the results are presented in the form of
compounds). We believe that this shift brings QSAR
modeling in tune with the ultimate needs of experimen-
tal medicinal chemists in novel compounds rather than
models.

Methods
Datasets. Test and Training Set Selection. The phar-

macological data for 48 D1 antagonists used in this study were
generated in one of our laboratories; the affinity of each
compound against the D1 receptor was experimentally mea-
sured in triplicate (reported elsewhere;18,33-35 chemical struc-
tures of antagonists and the values of their binding affinity
are given in the Supporting Information). MolConnZ1 descrip-
tors were calculated for each compound. The descriptors were
then linearly normalized to fall within the range between zero
and one based on the maximum and minimum values of each
descriptor (i.e., range-scaled). Normalization was required to
prevent unequal descriptor weighting during the QSAR model
generation process as described later. The datasets were then
subdivided into multiple training/test set pairs using the
sphere exclusion method36 developed in our laboratory. The
number of compounds in the test set was varied to achieve
the largest possible size of the test set, while ensuring that
the training set models were still able to accurately predict
the binding affinity of the test set compounds. The statistical
significance of the training and test set models was character-
ized with leave-one-out cross-validated R2 (q2), or fitness
criterion, or R2 and a linear fit predictive R2, depending on
the modeling approach used (vide infra). The acceptability
cutoffs were q2/R2 > 0.6/0.637 for CoMFA and kNN approaches;
for SA-PLS we used the training set fitness and R2 test set

cutoffs of 0.6/0.6, and for SVM the R2 training and R2 test set
cutoffs were 0.6/0.6. Models that did not meet these cutoff
criteria were discarded. Additional details on the selection of
training and test sets and model acceptance criteria are
described elsewhere.36,37

Y-Randomization Test. This is a widely used technique
to ensure the robustness of a QSAR model.38 In this test, the
dependent-variable vector, Y-vector, is randomly shuffled and
a new QSAR model is developed using the original independent-
variable matrix. This process is repeated several times. It is
expected that the resulting QSAR models should generally
have low training set statistics (q2, fitness, R2

train, etc.) and
low test set R2. It is likely that sometimes, though infrequently,
high training set statistics may be obtained due to a chance
correlation or structural redundancy of the training set.39 If
all QSAR models obtained in the Y-randomization test exhibit
relatively high training set statistics and test set R2 values, it
implies that an acceptable QSAR model cannot be obtained
for the given dataset by the current modeling method. This
test was applied to all datasets considered in this study.

CoMFA. Structures were generated and CoMFA was per-
formed within the QSAR module of the SYBYL version 6.8
molecular modeling package.28 Default Sybyl settings were
used, except as otherwise noted. Molecular mechanics calcula-
tions were performed with the standard Tripos force field with
a convergence criterion requiring a minimum energy change
between free energy minimization steps of 0.01 kcal/mol. The
molecules were aligned in 3D space such that three or more
structural features common to all of the compounds in the
training set had approximately the same Cartesian coordi-
nates. In this study, the amine group and the two aromatic
carbons corresponding to those where hydroxyls would be
present in the catechol ring of full D1 agonists (i.e., beta-phenyl
dopamine pharmacophore) were used as the three points of
alignment. Charges were calculated using the Gasteiger-
Huckel method as implemented in SYBYL. The steric and
electrostatic field energies were calculated using sp3 carbon
probe atoms with a +1 charge. The CoMFA QSAR equations
were calculated using the partial least-squares (PLS) algo-
rithm. The optimal number of components (ONC) in the final
PLS model was determined by the cross-validated R2 (q2) and
standard error of prediction (SDEP) values, as obtained from
the leave-one-out cross-validation technique. Statistical results
reported by CoMFA are in q2 (eq 1) and R2 (eq 2) values, where
q2 represents the training set and R2 represents the test set.

where Ypred ) predicted affinity, Yactual ) actual affinity, and
Yh ) mean actual affinity, and

where Yh pred is the mean predicted affinity.
The number of components with the lowest SDEP and

highest q2 value was selected as the ONC.
Generation of 2D Molecular Descriptors. All chemical

structures were generated using the SYBYL software pack-
age.28 Molecular topological indices40 were generated with the
MolConnZ (MZ) software version 4.05.1 Overall, MolConnZ
produces over 400 different descriptors. Most of these descrip-
tors characterize chemical structure, but several depend on
the arbitrary numbering of atoms in a molecule and are
introduced solely for bookkeeping purposes. In our study, only
312 chemically relevant descriptors were initially calculated
and a small subset of descriptors with zero values or zero
variance was removed prior to model generation.

q2 ) 1 - (∑Y

(Ypred - Yactual)
2

∑
Y

Yactual - Yh )2

(1)

R2 ) ( ∑
Y

(Ypred - Yh pred)(Yactual - Yh )

∑
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(Ypred - Yh pred)
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MZ descriptors were also range-scaled since the absolute
scales for MZ descriptors can differ by orders of magnitude.
Accordingly, our use of range scaling avoided giving descriptors
with significantly higher ranges a disproportional weight upon
distance calculations in multidimensional MZ descriptor space.
All calculations were performed on an SGI Octane at the
University of North Carolina’s Molecular Modeling Laboratory.

SA-PLS Method. SA-PLS employs a combination of a
simulating annealing driven sampling of the descriptor space
with the use of a PLS algorithm to optimize the correlation
between the descriptor values and the target property. This
method is based on our earlier implementation of genetic
algorithms for variable selection QSAR method (i.e., GA-
PLS).41 The optimal set of descriptors is determined by an
iterative variable selection method. The iterative loop begins
by randomly selecting a specified number of descriptors and
building a model using PLS to determine the fitness of the
model produced with that set of descriptors (eq 3).

where n ) number of compounds, m ) number of principal
components, Ypred ) predicted affinity, Yactual ) actual affinity,
and Yh ) mean affinity of all the compounds. A Metropolis-
like acceptance criterion (eq 4) is used to drive the descriptor
selection process toward an optimized descriptor subset.

where ϑ ) a random number between 0 and 1, Fnew ) fitness
of the new model, Fold ) fitness of old model, and T )
temperature.

After each iteration, the temperature is lowered by a
specified percentage, which decreases the probability that the
less predictive model is chosen. This allows the algorithm to
find an internally predictive set of descriptors and increases
the probability that the final model is an optimum solution
where changing a small subset of the descriptors would most
likely not improve the model. Additional details of the imple-
mentation of the SA procedure for variable selection QSAR
are given elsewhere.30

kNN Method. The kNN QSAR method30 employs the kNN
pattern recognition principle39 and a variable selection proce-
dure. Briefly, a fixed size subset of descriptors is selected
randomly in the beginning of the calculations. The model is
built using this random descriptor selection with leave-one-
out (LOO) cross-validation, where each compound is eliminated
from the training set and its biological activity is predicted as
the average activity of k most similar molecules (k ) 1-5).
The value k is optimized during the model building process to
give the best prediction of the training set. The similarity is
characterized by the Euclidean distance between compounds
in multidimensional descriptor space. A method of simulated
annealing with the Metropolis-like acceptance criterion (simi-
lar to the one described above for the SA-PLS method) is used
to sample the entire descriptor space to converge on the subset
of the same size which affords the highest value of LOO R2

(q2). The descriptor subsets of different sizes are optimized
using this procedure to arrive at a variety of models with
acceptable q2 greater than certain threshold (we chose 0.6 as
the default threshold). The training set models with acceptable
q2 are then validated on external test sets to select predictive
models as discussed above. Further details of the kNN method
implementation, including the description of the simulated
annealing procedure used for stochastic sampling of the
descriptor space, are given elsewhere.30

The original kNN method30 was enhanced in this study by
using weighted molecular similarity. In the original method,
the activity of each compound was predicted as the algebraic
average activity of its k-nearest-neighbor compounds in the

training set. In general, however, the Euclidean distances in
the descriptor space between a compound and each of its k
nearest neighbors are not the same. Thus, the neighbor with
the smaller distance from a compound was given a higher
weight in calculating the predicted activity as follows:

Here di is the Euclidean distance between the compound and
its k nearest neighbors, k is the number of nearest neighbors,
wi is the weight for every individual nearest neighbor, yi is
the actual activity value for nearest neighbor i, and ỹ is the
predicted activity value. In summary, the kNN algorithm
generates both an optimum k value and an optimal nvar subset
of descriptors, which afford a QSAR model with the highest
value of q2. This modified algorithm was also applied recently
to the kNN QSAR modeling of anticonvulsant agents.42

Applicability Domain of kNN QSAR Models. Formally,
a QSAR model can predict the target property for any
compound for which chemical descriptors can be calculated.
Since the training set models are developed in the kNN QSAR
approach by interpolating activities of the nearest neighbor
compounds,30 a special applicability domain (i.e., similarity
threshold) should be introduced to avoid making predictions
for compounds that differ substantially from the training set
molecules.25

To measure similarity, each compound is represented by a
point in the M-dimensional descriptor space (where M is the
total number of descriptors in the descriptor pharmacophore)
with the coordinates Xi1, Xi2, ..., XiM, where Xis are the values
of individual descriptors. The molecular similarity between any
two molecules is characterized by the Euclidean distance
between their representative points. The Euclidean distance
di,j between two points i and j (which correspond to compounds
i and j) in M-dimensional space can be calculated as follows:

Compounds with the smallest distance between one another
are considered to have the highest similarity. The distances
(similarity) of compounds in our training set are compiled to
produce an applicability domain threshold, DT, calculated as
follows:

Here, yj is the average Euclidean distance of the k nearest
neighbors of each compound within the training set, σ is the
standard deviation of these Euclidean distances, and Z is an
arbitrary parameter to control the significance level. Based
on successful results from previous studies, we set the default
value of this parameter to 0.5, which formally places the
boundary for which compounds will be predicted at one-half
of the standard deviation (assuming a Boltzmann distribution
of distances between k nearest neighbor compounds in the
training set). Thus, if the distance of the external compound
from at least one of its nearest neighbors in the training set
exceeds this threshold, the prediction is considered unreliable.

SVM Method. Support vector machines (SVM) was devel-
oped by Vapnik31 as a general data modeling methodology
where both the training set error and the model complexity
are incorporated into a special loss function that is minimized
during model development. The methodology allows one to
regulate the importance of the training set error versus the
model complexity to develop the optimum model that best
predicts a test set. Later SVM was extended to afford the
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n
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development of SVM regression models for datasets with
noninteger activities, such as QSAR.

We have implemented the SVM method for QSAR modeling
as follows: Let m be the number of points representing the
training set compounds with known biological activity in an
n-dimensional descriptor space. The problem is to generate a
hypersurface in the descriptor-activity (n + 1) dimensional
space that relates descriptor values to the biological activities.
Thus, the biological activity of any compound can be predicted
from its descriptors by placing the point corresponding to this
compound on this hypersurface.

Given a training set of instance-label pairs (xi, yi), i ) 1, ...,
m, where xi ∈ Rn are the descriptors that describe each
compound and yi is the biological activity (e.g., IC50 value) of
each compound, the sought correlation between structure and
activity can be represented as yi ) f(xi). For simplicity, we will
define f(xi) to be a linear function of the form

where ω is the coefficient vector of the linear function and b
is the bias. One major goal of any regression algorithm is to
minimize the errors between the predicted and the actual
values as defined by êi in the following equation:

As a means of regulating generalization of the algorithm, SVM
utilizes the following constraint to solve the optimization
problem:

with the constraint

whereas the training vectors xi are mapped into a higher
dimensional space by a kernel function φ. Then SVMs finds a
linear correlation between the actual activity and this higher
dimensional space φ(xi). For this study, we have implemented
a linear kernel. C > 0 is the penalty parameter of the error
term that controls the weight between the two terms in the
SVM optimization problem.

In many cases, however, the binding activities may contain
small errors or the kernel function may not be capable of
perfectly representing the training compounds in a simplified
manner. As a means of inhibiting the algorithm from produc-
ing an overly complicated training set correlation that would
not accurately predict a test set, we included a slack variable,
ε. This slack variable is a threshold of prediction error for any
compound’s activity before the algorithm is penalized for a poor
prediction. Beyond the boundary ε the algorithm is penalized
by the value of êi - ε. When combining the SVM optimization
problem defined in (11) with this added slack variable, the
following SVM loss function is obtained:

The nature of SVMs requires one to specify the values of C
and ε a priori since it is not known beforehand which values
may work best for the dataset; thus, a parameter search must
be performed. The goal is to identify good values of C and ε

such that the model can accurately predict unknown data (i.e.,
testing data). In most circumstances, the highest training
accuracy does not yield the best accuracy on a test set.
Therefore, the optimum C and ε values are commonly selected
based on the values that give the best test set results.

For this study we have chosen to use a “grid-search” on C
and ε to identify the best parameters. There are several
advanced methods which can save computational cost by

estimating the best parameters. We chose a simple grid-search
approach for the following two reasons. First, unlike alterna-
tive methods which use approximations or heuristics, grid
search allows for an exhaustive parameter search. Second, the
computational time to find good parameters by a grid-search
is not much longer than the time required by advanced
methods since there are only two optimization parameters.
Furthermore, the grid-search can be easily parallelized be-
cause each parameter is independent. Many of the advanced
methods for parameter estimation are iterative processes, e.g.,
walking along a path, which is difficult for parallelization.

Especially for large datasets, a complete grid-search may
be overly time-consuming; therefore, we commonly use a coarse
grid on a subset of available data first. A user may randomly
choose a subset of the dataset, conduct a grid-search using
those compounds, and then do a fine-tuned grid-search on the
complete dataset over the parameter value ranges that
exhibited the best results. For this study our coarse grid-search
of C varied from 50 to 1000 with an increment of 63, and ε

was varied from 0 to 1.5 with an increment of 0.1. Once the
best parameters for C and ε were found, we then did a fine-
tuned search surrounding those values with ranges of (200
and (0.3 for C and ε, respectively. In this fine-tuned search
the increments were 5 for C and 0.05 for ε.

Applicability Domain of SVM QSAR Models. To prevent
the inaccurate activity prediction of compounds dissimilar to
the training set, we have created a simple pseudoboundary
around our training set compounds to dictate where the
training set resides within the chemistry space. Any test
compound that lies in the chemistry space beyond this bound-
ary may possess a different descriptor-activity relationship
than the training set compound. For this reason we chose not
to predict biological activities for compounds beyond this
boundary.

Based on successful results we have generated using kNN’s
modeling with applicability domain, we chose to take a similar
approach with the SVM QSAR. The SVM method does not
employ a definitive variable selection technique as in kNN,
where the weights of each descriptor are assigned a value of
0 or 1. Instead, the weight of each descriptor is a noninteger
number that may have a positive (directly correlated with the
biological property) or negative (inversely related to the
biological property) value. Knowing this, we wanted to select
a subset of descriptors that the model found to correlate well
with compound activity. Since both high positive weights and
low negative weights may be vital for activity prediction, we
chose to use the absolute value of each of these weights as a
measure of how important they were for predicting activity.
Of course, the range of these weights may vary drastically
between models, so we also normalized the weights between
zero and one and then implemented a similar applicability
domain criterion compared to the one used by kNN. To do that,
the calculated Euclidean distances between a test compound
and the training set were weighted based on the normalized,
absolute weights of each descriptor assigned by the SVM
model. This produces a similar pseudoboundary to kNN, except
the boundary would be extended for descriptors whose weight
was close to zero and the boundary would be narrow for
descriptors whose normalized, absolute weight was close to
one.

Database Mining. Although we have employed four dif-
ferent QSAR methods for model building, only two, i.e., kNN
and SVM, have produced predictive models as discussed in
the Results section below. Thus, only validated models built
with these two algorithms were used for the data mining
studies. Three publicly available chemical databases were
screened including the NCI database containing ca. 250 000
compounds,43 the ChemDiv database containing ca. 450 000
compounds,44 and the Maybridge database with 54 000 com-
pounds.45 MZ descriptors were generated for each compound
in the databases and linearly normalized based on the
maximum and minimum values of each descriptor in the
training set. Each validated kNN and SVM model was then
used to predict activity for the database compounds that were

f(xi) ) 〈ωi,xi〉 + b (9)

|yi - (〈ωi,xi〉 + b)| ) êi (10)

min
ω,b,ê

||ω||
2

+ C∑
i)1

m

êi (11)

|yi - (ωφ(xi) + b)| ) êi

minloss )
||ω||

2
+ C∑

i ) 1

m {0, if êi e ε

êi - ε, if êi > ε } (12)
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within the applicability domain for that model. The results
for each individual prediction exercise were then combined and
the mean predicted activity was calculated for each compound
that was within the applicability domain of multiple models.
The percentage of models that predicted each compound in the
database and the standard deviation of those predictions were
also recorded for each compound. It is our hypothesis that the
higher the percentage of models with a stringent applicability
domain that predict a compound’s activity, the more likely the
compound actually possesses the predicted activity. This may
also apply to the standard deviation of the predictions made
for a single compound.

The smaller the prediction variance across all models, the
more confidence we have that the predicted biological activity
for that compound is accurate. For these reasons, we selected
a subset of compounds as hits that were predicted by at least
50% of the models and exhibited a small standard deviation
across all models. We have also performed an additional
estimate as to whether the hits resulting from database mining
using variable selection models possessed the features es-
sential (i.e., common) for all dopamine D1 receptor ligands.
This additional precaution was considered essential because
variable selection procedure by default eliminates features
(descriptors) that have the same values for all modeled
compounds. To this end, the training set was used to calculate
the standard deviation of the nearest neighbor distances using
all descriptors. Any database hit that did not reside within 5
standard deviations of any training set compound in the entire
descriptor space was discarded.

Results

QSAR Models Based on CoMFA. SCH23390 was
used as a template to align the dopamine D1 receptor
antagonists. The CoMFA steric and electrostatic fields
obtained using an sp3 carbon with a +1 charge were
calculated by multiplying the â-coefficient and standard
deviation of columns in the QSAR table (stdev*coeff).
From this, the CoMFA steric and electrostatic fields
were employed to explain differences in the measured
activity of the D1 inhibitors.

Models were generated with q2/R2 values of 0.68/0.63
as shown in Figure 1. To prove that a method does not
have the capability to fit random data to structural
features, the ligand binding affinities were randomly
rearranged and QSAR models were generated (cf. Y-

randomization test in the Methods section). The best
models for randomized data only produced a q2 of 0.2
(data not shown), indicating that the models generated
using true activity data were robust.

QSAR Models Developed with the SA-PLS
Method. Predictive models were obtained with the
training/test set fitness/R2 values of 0.68/0.63, as shown
in Figure 2. To prove that the model was robust, the
ligand binding affinities were randomly rearranged and
QSAR models were generated as discussed previously.
The best models for randomized data only produced a
fitness of 0.25 (data not shown), indicating that the
models generated using true activity data are based on
actual structure-activity correlations rather than a
chance correlation.

QSAR Models Developed with the kNN Method.
The kNN method produced highly predictive models
with q2/R2 values of 0.7/0.76, as shown in Figure 3. To
ensure that these models are not based on noise, the
ligand activities were randomly shuffled within the
training set. Models produced with these activity arrays
lowered the mean q2 value produced by kNN to ap-
proximately 0.2 (data not shown). This suggests that
kNN does not have the ability to correlate descriptors
from D1 ligands to random activities and that the
models produced represent a true structure-activity
relationship.

QSAR Models Developed with the SVM Method.
SVM produced statistically significant models with
R2

train/R2
test values of 0.74/0.71, as shown in Figure 4.

The optimum values of C and ε were found to be 160
and 0.3, respectively. The ε value, which corresponds
to an acceptable error of 0.3 log unit, agrees with the
expected experimental error that is commonly seen in
ligand-receptor binding experiments. To ensure that
the method does not have the capability to fit random
data to structural features, the ligand binding affinities
were randomly shuffled and SVM models were gener-
ated as discussed previously. The best models using
randomized data only produced an R2 for the test set of
0.3 (data not shown), providing further evidence that

Figure 1. Comparison of actual vs predicted D1 antagonist
binding affinity based on CoMFA models. The results are
shown for both training (38 compounds; dark tilted squares)
and test (10 compounds, gray squares).

Figure 2. Comparison of actual vs predicted D1 antagonist
binding affinity based on SA-PLS models. The results are
shown for both training (38 compounds; dark tilted squares)
and test (10 compounds, gray squares).
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the models generated using real activity data are based
on actual structure-activity relationships rather than
a chance correlation.

Interpreting Predictive QSAR Models. Upon
analysis of the kNN and SVM models built with Mol-
connZ descriptors, several commonly selected descrip-
tors were found suggesting they played critical roles in
relating chemical structure to D1 binding affinity. Based
on MolconnZ manual and personal communications
with Dr. Lowell Hall, one of the principal developers of
MolconnZ, these frequently selected descriptors fell into
5 classes: (1) The appearance of n4Pae23, n3Pad11,
n2Pag22, n3Pad22, Tm, and Tg descriptors suggests a
high importance of steric factors. These descriptors are
based on the number of terminal vertex degrees; the
high values of these descriptors suggest steric crowding.

This is expected since several ligands in the dataset
have hydrophobic accessory rings and amino-branched
side chains that could create unfavorable steric interac-
tions when bound to the D1 receptor. (2) Atom type
E-state descriptors such as SsCH3, SsI, and SssO
appeared several times suggesting a high importance
of electron accessibility for these atoms. In fact, it is
well-known that the hydroxyls of the catechol ring on
D1 agonists are critical for forming hydrogen bonds to
serine residues within the D1 binding pocket.46 (3) The
appearance of the Hmax descriptor indicates the im-
portance of polar hydrogen atoms in these molecules
such as -OH, dNH, and -NH. This agrees with the
well-known fact that the catechol hydroxyls and amine
group of dopamine-like ligands play a large role in
ligand binding. (4) The descriptor Xvch5 also appeared
in most models suggesting the importance of a five-
membered ring. There are 10 compounds in the training
dataset that contain a five-membered ring. The presence
of this five-membered ring, in the same relative position,
may have caused steric interactions that led to the low
binding affinity found for these compounds. (5) Last,
several descriptors indicating the presence of iodine
such as nI, nsI, and SsI appeared in several models.
Only one compound in our training set contained an
iodine atom located at the para position of the typical
catechol ring suggesting that this substituent may play
an important role in regulating receptor binding.

Database Mining with Predictive QSAR Models.
Although robust models were generated in all cases,
those obtained with both CoMFA and SA-PLS were not
applied in database screening studies since their sta-
tistical parameters were below (CoMFA) or marginally
above (SA-PLS) our acceptability criteria of q2/R2 greater
than 0.6 for training/test set models, respectively. In
addition, CoMFA is certainly unsuitable for the large
scale virtual screening because of the difficulties as-
sociated with the conformational analysis and alignment
that would have to be done for every compound in the
screening set.

The ChemDiv, NCI, and Maybridge databases total-
ing over 750 000 compounds were screened by each of
the validated (121) kNN and (106) SVM models with a
defined applicability domain and predicted activities
were averaged to yield a consensus value. This approach
identified only 54 compounds with moderate to high
predicted affinities out of the three chemical databases.
There may in fact be additional D1 ligands that our
screening procedure missed; however, compounds in the
database are not annotated with biological data. The
chemical structures of the 54 compounds predicted as
hits are shown in Table 1. Three compounds (shown in
Table 1) did not contain a catechol ring found in most
dopamine ligands, suggesting that they may be novel
structural leads. The identification of a novel D1 struc-
tural class may bring us closer to the ultimate goal of
generating a D1 selective ligand with high affinity. It
should be noted that after manually searching with each
of these compounds for known biological activity, five
compounds were, indeed, found to have been previously
characterized as dopamine D1 receptor ligands47-50 (see
Table 2). The remaining 49 compounds could not be
found in the scientific literature as ever tested against
the D1 receptor.

Figure 3. Comparison of actual vs predicted D1 antagonist
binding affinity based on kNN QSAR models. The results are
shown for both training (38 compounds; dark tilted squares)
and test (10 compounds, gray squares).

Figure 4. Comparison of actual vs predicted D1 antagonist
binding affinity based on SVM QSAR models. The results are
shown for both training (38 compounds; dark tilted squares)
and test (10 compounds, gray squares).
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Table 1. Compounds Identified as Hits from Mining the NCI, Maybridge, and ChemDiv Databasesa
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Discussion
For our dataset of 48 D1 antagonists, thousands of

QSAR models were built and as expected not all

methods used were equally predictive. The top 10% of
CoMFA models ranked on the basis of the test set
accuracy exhibited R2 ranging from 0.38 to 0.54, for SA-

Table 1 (Continued)

a None of these compounds were present in our training set.
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PLS models it was 0.55 to 0.69, kNN yielded ranges
from 0.67 to 0.87, and SVM exhibited values from 0.68
to 0.73. We then chose to employ the validated SVM
and kNN, exhibiting test set R2 values greater than 0.7.
This high number of models used a broad range of
descriptors suggesting that they are diverse. By ranking
predictions based on the percentage of models that have
a particular compound within their applicability do-
mains, one can obtain a sense of confidence that the
predicted compound is in fact a ligand of the target of
interest. For this study, only compounds that passed our
global similarity screen and were predicted by over 50%
of the models were considered candidate ligands for the
D1 receptor. Additional measures of confidence can be
taken from the standard deviation of prediction between
the models for any one algorithm, if multiple QSAR
algorithms predict the same compound, and how close
are the mean predictions between multiple algorithms
that are validated against the initial dataset.

The use of database mining in this research project
also helped point out current pitfalls in the process and
gave us the chance to discover ways to avoid those
pitfalls. The most important factor when performing a
database search is the ability of a predictive model to
search an external database for drug lead identification.
If a model is unable to predict the activities of the
training or test set compounds with high accuracy, then
it most likely will not accurately predict activities of
compounds from an external database. Another obstacle
that was realized is that a small number of variable
selection QSAR models may not be used efficiently for
database mining. For example, kNN may select only 15
descriptors to produce an acceptable QSAR model. By

default, a QSAR model reflects a correlation between
variation in descriptor values and that of the target
property. A small subset of essential descriptors, how-
ever, may exist that are relatively constant for the
training set (and therefore may be essential determi-
nants of the compound pharmacological class; cf. con-
ventional pharmacophores), so they may not be included
in the model. Therefore, if one searches a database with
a small number of variable-selection QSAR models, a
rough similarity screen of the database may be neces-
sary in addition to model-based activity prediction. This
should be done to ensure that compounds predicted
active are not characterized by dissimilar values for
constant essential descriptors that naturally were ex-
cluded in model development. In fact, after screening
the chemical libraries, we first identified over 7100
compounds that were predicted by at least one SVM or
kNN model with stringent applicability domain cutoffs.
However, after a very coarse similarity screen using the
entire descriptor space, most of these compounds were
eliminated because they were not found within the
applicability domain of at least 30% of the models. This
reduced the list of potential hits to the final collection
of 54 candidate dopamine D1 receptor hits.

Conclusions
While CoMFA and SA-PLS produced reasonable

models (q2 or fitness and R2 values greater than 0.5),
the models with much higher predictive power were
generated with kNN and SVM. Mining of the ChemDiv,
NCI, and Maybridge chemical databases for D1 antago-
nists, based upon kNN and SVM models, resulted in
several hits with and without catechol rings. A few of

Table 2. Selected Computational Hits Resulting from Mining the NCI, Maybridge, and ChemDiv Databases That Were Identified
Previously as D1 Antagonists with Measured D1 Affinitya

a None of these compounds were present in the training set.
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the predicted compounds are known D1 ligands not
included in the training set, validating the use of our
approach for lead identification. Compounds lacking
catechol rings that are predicted to be D1 ligands may
in fact lead to a novel structural class that exhibits an
atypical pharmacological profile. Although further ex-
perimental work is needed to verify this hypothesis, the
identification of known ligands suggests that models
produced in this study are capable of detecting novel
D1 compounds from large chemical databases.

As we discussed briefly at the onset of this paper, our
general approach to QSAR modeling goes beyond the
traditional boundaries of this method. Although QSAR
modeling is generally regarded as a ligand optimization
approach that may lead to rational design of novel
compounds, the examples of rationally designed com-
pounds are rare in any traditional QSAR modeling
paper. Most of the publications present models that are
capable of reproducing training set compound activity
with high accuracy (in some cases, test set compound
predictions are included but those already have their
biological activity determined). Thus, a typical outcome
of a traditional QSAR modeling study is a set of
statistical characteristics such as q2, R2, F value, etc.,
mostly for the training set, which provide little help to
chemists interested in the design of novel molecules
(CoMFA presents a notable exception by formally
providing structural design hypothesis based on “fields”).

The approach applied herein to QSAR modeling of D1
antagonists does not stop when one could obtain a
statistically significant training set model. Our approach
places the emphasis of the entire QSAR modeling study
on making reliable predictions of chemical structures
expected to have the desired biological activity, rather
than on respectable statistical characteristics of (train-
ing set) models. These predicted structures either are
already available in existing chemical databases or are
synthetically feasible (i.e., included in virtual combina-
torial chemical libraries, which can also be mined with
QSAR models). We believe that this extended view of
the entire QSAR modeling approach exemplified both
by our recent studies of anticonvulsants42 and those of
D1 antagonists presented in this paper brings the focus
of the modeling closer to the needs of medicinal chemists
who both supply computational chemists with experi-
mental structure-activity data and expect novel struc-
tures rather than equations and statistical parameters
in return. We suggest that our approach that combines
predictive QSAR modeling and database mining pro-
vides an important general avenue toward drug discov-
ery that can be explored for many pharmacological
datasets.
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